• 01865 307 528
  • 07889 443721
  • christine@oxfordorthopaedics.net
  • Manor Hospital, Headington, Oxford, OX3 7RP
  • Home
  • Reference Book
      • Unicompartmental Arthroplasty with the Oxford Knee
      • Preface
      • Chapter 1: Introduction and Historical Overview
      • Chapter 2: Design and Biomechanics of the Oxford Knee
      • Chapter 3: Mobility and Stability of the Intact and Replaced Knee
      • Chapter 4; Indications: Anteromedial Osteoarthritis
      • Chapter 5: Contraindications in Anteromedial Osteoarthritis
      • Chapter 6: Principles of the Oxford Operation
      • Chapter 7: Surgical technique: Cemented or cementless implantation with Microplasty instrumentation
      • Chapter 8: Medial Indications other than AMOA
      • Chapter 9: Postoperative Management and Radiography
      • Chapter 10: Clinical Results
      • Chapter 11: Management of Complications
      • Chapter 12: The Lateral Side
      • Appendix
  • Publications
  • Patient’s Area
  • Meet the Team
    • David_MurrayDavid Murray
    • Chris-Dodd2Christopher Dodd
    • John-O’ConnorJohn O’Connor
    • John GoodfellowJohn Goodfellow
    • Oxford-Knee-Fellows23Knee Fellows & Engineers
  • Contact
  • Home
  • Reference Book
    • Unicompartmental Arthroplasty with the Oxford Knee
    • Preface
    • Chapter 1: Introduction and Historical Overview
    • Chapter 2: Design and Biomechanics of the Oxford Knee
    • Chapter 3: Mobility and Stability of the Intact and Replaced Knee
    • Chapter 4; Indications: Anteromedial Osteoarthritis
    • Chapter 5: Contraindications in Anteromedial Osteoarthritis
    • Chapter 6: Principles of the Oxford Operation
    • Chapter 7: Surgical technique: Cemented or cementless implantation with Microplasty instrumentation
    • Chapter 8: Medial Indications other than AMOA
    • Chapter 9: Postoperative Management and Radiography
    • Chapter 10: Clinical Results
    • Chapter 11: Management of Complications
    • Chapter 12: The Lateral Side
    • Appendix
  • Publications
  • Patient’s Area
  • Meet the Team
    • David Murray
    • Christopher Dodd
    • John O’Connor
    • John Goodfellow
    • Knee Fellows & Engineers
  • Contact
Expand All Collapse All
  • 7: Surgical technique: Cemented or cementless implantation with Microplasty instrumentation
    • The size of the femoral component
    • Positioning the limb
    • Incision
    • Excision of osteophytes
    • Tibial saw cut
      • The vertical tibial cut
      • The horizontal tibial cut
    • The femoral drill holes and alignment
    • Femoral saw cut
    • Milling the condyle
      • Measuring the flexion and extension gaps
      • Second and third milling
      • Preventing impingement
    • Milling the condyle with Tool-pics
    • Final preparation of the tibial plateau
    • Final trial reduction
    • Cementing the components
    • Cementless: Component impaction
    • Bearing insertion
    • Instruments
      • Set 1: Tools 1 to 14
      • Set 2: Tools 15 to 24
      • Set 3: Tools 25 to 38
      • Set 4: Tools 39 to 50
      • Set 5: Tools 51 to 54

The vertical tibial cut

96 views 0

Identify the apex of the medial tibial spine with a diathermy (bovie) and make a mark just medial to the apex. Use the reciprocating saw designed for the OUKA with a stiff narrow blade, round end, and depth markings (Fig. 7.3) to make the vertical tibial saw cut. The saw cut should be just medial to the apex of the medial tibial spine. It will pass through the edge of the ACL insertion. Point the blade towards the ASIS, the position of which can be demonstrated by the assistant (Fig. 7.11(b)) or align the blade in the tibial flexion plane. The saw must reach the back of the tibial plateau and a little beyond. This is achieved by lining up the appropriate mark on the saw with the anterior tibial cortex (a series of marks appropriate to each size of tibial component exist on the saw blade). Advance the saw vertically down until it rests on the surface of the saw guide (Fig. 7.11(c)). The saw must remain parallel to the guide. Do not lift the saw handle as this will damage the posterior cortex and increase the risk of tibial plateau fracture.

Figure 7.11 The vertical tibal cut (a) just medial to the apex of the medial spine, (b) directed towards ASIS, and (c) must not be too deep.

Next >>

Was this helpful?

Yes  No
Related Articles
  • Set 1: Tools 1 to 14
  • Milling the condyle with Tool-pics
  • Set 5: Tools 51 to 54
  • Set 4: Tools 39 to 50
  • Set 3: Tools 25 to 38
  • Set 2: Tools 15 to 24
The Oxford Knee Replacement is the most widely used partial knee replacement worldwide. Replacing one side of the knee, unicompartmental knee replacement, tends to result in shorter hospital stays, fewer short-term complications, faster recovery and better knee function than total knee replacements.

© All rights reserved Oxford Knee Info 2025

.

Privacy Policy

Popular Search:ACL damage, physical signs