• 01865 307 528
  • 07889 443721
  • christine@oxfordorthopaedics.net
  • Manor Hospital, Headington, Oxford, OX3 7RP
  • Home
  • Reference Book
      • Unicompartmental Arthroplasty with the Oxford Knee
      • Preface
      • Chapter 1: Introduction and Historical Overview
      • Chapter 2: Design and Biomechanics of the Oxford Knee
      • Chapter 3: Mobility and Stability of the Intact and Replaced Knee
      • Chapter 4; Indications: Anteromedial Osteoarthritis
      • Chapter 5: Contraindications in Anteromedial Osteoarthritis
      • Chapter 6: Principles of the Oxford Operation
      • Chapter 7: Surgical technique: Cemented or cementless implantation with Microplasty instrumentation
      • Chapter 8: Medial Indications other than AMOA
      • Chapter 9: Postoperative Management and Radiography
      • Chapter 10: Clinical Results
      • Chapter 11: Management of Complications
      • Chapter 12: The Lateral Side
      • Appendix
  • Publications
  • Patient’s Area
  • Meet the Team
    • David_MurrayDavid Murray
    • Chris-Dodd2Christopher Dodd
    • John-O’ConnorJohn O’Connor
    • John GoodfellowJohn Goodfellow
    • Oxford-Knee-Fellows23Knee Fellows & Engineers
  • Contact
  • Home
  • Reference Book
    • Unicompartmental Arthroplasty with the Oxford Knee
    • Preface
    • Chapter 1: Introduction and Historical Overview
    • Chapter 2: Design and Biomechanics of the Oxford Knee
    • Chapter 3: Mobility and Stability of the Intact and Replaced Knee
    • Chapter 4; Indications: Anteromedial Osteoarthritis
    • Chapter 5: Contraindications in Anteromedial Osteoarthritis
    • Chapter 6: Principles of the Oxford Operation
    • Chapter 7: Surgical technique: Cemented or cementless implantation with Microplasty instrumentation
    • Chapter 8: Medial Indications other than AMOA
    • Chapter 9: Postoperative Management and Radiography
    • Chapter 10: Clinical Results
    • Chapter 11: Management of Complications
    • Chapter 12: The Lateral Side
    • Appendix
  • Publications
  • Patient’s Area
  • Meet the Team
    • David Murray
    • Christopher Dodd
    • John O’Connor
    • John Goodfellow
    • Knee Fellows & Engineers
  • Contact
Expand All Collapse All
  • 2: Design and Biomechanics of the Oxford Knee
    • The natural knee
    • The Oxford ‘Meniscal’ Knee
    • Polyethylene wear in the Oxford Knee
      • Polyethylene wear in the Oxford Knee: Continued
    • Cementless Oxford arthroplasty
    • Potential problems with the tibia
    • References

References

83 views 0

Argenson JN, Blanc G, Aubaniac JM & Parratte S 2013. Modern unicompartmental knee arthroplasty with cement: a concise follow-up, at a mean of twenty years, of a previous report. J Bone Joint Surg Am, 95, 905-9. https://www.ncbi.nlm.nih.gov/pubmed/23677357

Argenson JN, Komistek RD, Aubaniac JM, Dennis DA, Northcut EJ, Anderson DT & Agostini S 2002. In vivo determination of knee kinematics for subjects implanted with a unicompartmental arthroplasty. J Arthroplasty, 17, 1049-54. https://www.ncbi.nlm.nih.gov/pubmed/12478517

Argenson JN & O’connor JJ 1992. Polyethylene wear in meniscal knee replacement. A one to nine-year retrieval analysis of the Oxford knee. J Bone Joint Surg Br, 74, 228-32. https://www.ncbi.nlm.nih.gov/pubmed/1544958

Ashraf T, Newman JH, Desai VV, Beard D & Nevelos JE 2004. Polyethylene wear in a non-congruous unicompartmental knee replacement: a retrieval analysis. Knee, 11, 177-81. https://www.ncbi.nlm.nih.gov/pubmed/15194092

Bartel DL, Bicknell VL & Wright TM 1986. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg Am, 68, 1041-51. https://www.ncbi.nlm.nih.gov/pubmed/3745241

Borelli GA 1680. De Motu Animalium, Heidelberg, Springer Verlag.

Buechel FF & Pappas MJ 1986. The New Jersey Low-Contact-Stress Knee Replacement System: biomechanical rationale and review of the first 123 cemented cases. Arch Orthop Trauma Surg, 105, 197-204. https://www.ncbi.nlm.nih.gov/pubmed/3753173

Bullough PG, Munuera L, Murphy J & Weinstein AM 1970. The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br, 52, 564-7. https://www.ncbi.nlm.nih.gov/pubmed/5468789

Collier MB, Engh CA, Jr., Mcauley JP & Engh GA 2007. Factors associated with the loss of thickness of polyethylene tibial bearings after knee arthroplasty. J Bone Joint Surg Am, 89, 1306-14. https://www.ncbi.nlm.nih.gov/pubmed/17545435

Fairbank TJ 1948. Knee joint changes after meniscectomy. J Bone Joint Surg Br, 30B, 664-70. https://www.ncbi.nlm.nih.gov/pubmed/18894618

Goodfellow J & O’connor J 1978. The mechanics of the knee and prosthesis design. J Bone Joint Surg Br, 60-B, 358-69. https://www.ncbi.nlm.nih.gov/pubmed/581081

Hall RM, Siney P, Unsworth A & Wroblewski BM 1998. The association between rates of wear in retrieved acetabular components and the radius of the femoral head. Proc Inst Mech Eng H, 212, 321-6. https://www.ncbi.nlm.nih.gov/pubmed/9803151

Hamelynck KJ, Stiehl JB & Voorhorst PE 2002. Worldwide multicentre outcome study. . In: Kamelynck, KJ & Stiehl, JB (eds.) LCS Mobile Bearing Arthoplasty: 25 Years of Worldwide Experience. Berlin: Springer.

Kabo JM, Gebhard JS, Loren G & Amstutz HC 1993. In vivo wear of polyethylene acetabular components. J Bone Joint Surg Br, 75, 254-8. https://www.ncbi.nlm.nih.gov/pubmed/8444946

Kapandji I 1970. The physiology of the joints, Edinburgh, Churchill Livingstone.

Keblish PA & Briard JL 2004. Mobile-bearing unicompartmental knee arthroplasty: a 2-center study with an 11-year (mean) follow-up. J Arthroplasty, 19, 87-94. https://www.ncbi.nlm.nih.gov/pubmed/15457425

Kendrick BJ, Kaptein BL, Valstar ER, Gill HS, Jackson WF, Dodd CA, Price AJ & Murray DW 2015. Cemented versus cementless Oxford unicompartmental knee arthroplasty using radiostereometric analysis: a randomised controlled trial. Bone Joint J, 97-B, 185-91. https://www.ncbi.nlm.nih.gov/pubmed/25628280

Kendrick BJ, Longino D, Pandit H, Svard U, Gill HS, Dodd CA, Murray DW & Price AJ 2010. Polyethylene wear in Oxford unicompartmental knee replacement: a retrieval study of 47 bearings. J Bone Joint Surg Br, 92, 367-73. http://www.ncbi.nlm.nih.gov/pubmed/20190307

Kendrick BJ, Simpson DJ, Kaptein BL, Valstar ER, Gill HS, Murray DW & Price AJ 2011. Polyethylene wear of mobile-bearing unicompartmental knee replacement at 20 years. J Bone Joint Surg Br, 93, 470-5. http://www.ncbi.nlm.nih.gov/pubmed/21464484

Lim HC, Shon WY, Kim SJ & Bae JH 2014. Oxford phase III meniscal bearing fracture: case report. Knee, 21, 340-2. http://www.ncbi.nlm.nih.gov/pubmed/23993481

Marmor L 1976. The Modular (Marmor) knee: case report with a minimum follow-up of 2 years. Clin Orthop Relat Res, 86-94. https://www.ncbi.nlm.nih.gov/pubmed/975671

Morra EA & Greenwald AS 2003. Effects of walking gait on ultra-high molecular weight polyethylene damage in unicompartmental knee systems. A finite element study. J Bone Joint Surg Am, 85-A Suppl 4, 111-4. https://www.ncbi.nlm.nih.gov/pubmed/14652401

Murray DW, Goodfellow JW & O’connor JJ 1998. The Oxford medial unicompartmental arthroplasty: a ten-year survival study. J Bone Joint Surg Br, 80, 983-9. https://www.ncbi.nlm.nih.gov/pubmed/9853489

Oral E, Christensen SD, Malhi AS, Wannomae KK & Muratoglu OK 2006. Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E. J Arthroplasty, 21, 580-91. https://www.ncbi.nlm.nih.gov/pubmed/16781413

Oral E, Neils A, Yabannavar P & Muratoglu OK 2014. The effect of an additional phosphite stabilizer on the properties of radiation cross-linked vitamin E blends of UHMWPE. J Orthop Res, 32, 757-61. https://www.ncbi.nlm.nih.gov/pubmed/24536024

Pandit H, Hamilton TW, Jenkins C, Mellon SJ, Dodd CA & Murray DW 2015. The clinical outcome of minimally invasive Phase 3 Oxford unicompartmental knee arthroplasty: a 15-year follow-up of 1000 UKAs. Bone Joint J, 97-B, 1493-500. https://www.ncbi.nlm.nih.gov/pubmed/26530651

Pegg E, Pandit H, Gill HS, Keys GW, Svard UG, O’connor JJ & Murray DW 2011. Examination of ten fractured Oxford unicompartmental knee bearings. J Bone Joint Surg Br, 93, 1610-6. http://www.ncbi.nlm.nih.gov/pubmed/22161922

Pegg EC, Murray DW, Pandit HG, O’connor JJ & Gill HS 2013a. Fracture of mobile unicompartmental knee bearings: a parametric finite element study. Proc Inst Mech Eng H, 227, 1213-23. http://www.ncbi.nlm.nih.gov/pubmed/23940210

Pegg EC, Walter J, Mellon SJ, Pandit HG, Murray DW, D’lima DD, Fregly BJ & Gill HS 2013b. Evaluation of factors affecting tibial bone strain after unicompartmental knee replacement. J Orthop Res, 31, 821-8. https://www.ncbi.nlm.nih.gov/pubmed/23192787

Plante-Bordeneuve P & Freeman MA 1993. Tibial high-density polyethylene wear in conforming tibiofemoral prostheses. J Bone Joint Surg Br, 75, 630-6. https://www.ncbi.nlm.nih.gov/pubmed/8331121

Price AJ, Rees JL, Beard DJ, Gill RH, Dodd CA & Murray DM 2004. Sagittal plane kinematics of a mobile-bearing unicompartmental knee arthroplasty at 10 years: a comparative in vivo fluoroscopic analysis. J Arthroplasty, 19, 590-7. https://www.ncbi.nlm.nih.gov/pubmed/15284980

Price AJ, Short A, Kellett C, Beard D, Gill H, Pandit H, Dodd CA & Murray DW 2005. Ten-year in vivo wear measurement of a fully congruent mobile bearing unicompartmental knee arthroplasty. J Bone Joint Surg Br, 87, 1493-7. https://www.ncbi.nlm.nih.gov/pubmed/16260665

Price AJ & Svard U 2011. A second decade lifetable survival analysis of the Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res, 469, 174-9. http://www.ncbi.nlm.nih.gov/pubmed/20706811

Psychoyios V, Crawford RW, O’connor JJ & Murray DW 1998. Wear of congruent meniscal bearings in unicompartmental knee arthroplasty: a retrieval study of 16 specimens. J Bone Joint Surg Br, 80, 976-82. https://www.ncbi.nlm.nih.gov/pubmed/9853488

Ranawat CS, Meftah M, Windsor EN & Ranawat AS 2012. Cementless fixation in total knee arthroplasty: down the boulevard of broken dreams – affirms. J Bone Joint Surg Br, 94, 82-4. https://www.ncbi.nlm.nih.gov/pubmed/23118389

Rostoker W & Galante JO 1979. Contact pressure dependence of wear rates of ultra high molecular weight polyethylene. J Biomed Mater Res, 13, 957-64. https://www.ncbi.nlm.nih.gov/pubmed/511863

Sathasivam S, Walker PS, Campbell PA & Rayner K 2001. The effect of contact area on wear in relation to fixed bearing and mobile bearing knee replacements. J Biomed Mater Res, 58, 282-90. https://www.ncbi.nlm.nih.gov/pubmed/11319742

Schlueter-Brust K, Kugland K, Stein G, Henckel J, Christ H, Eysel P & Bontemps G 2014. Ten year survivorship after cemented and uncemented medial Uniglide(R) unicompartmental knee arthroplasties. Knee, 21, 964-70. https://www.ncbi.nlm.nih.gov/pubmed/25086900

Scott R & Schroeder D. Correlation of knee simulator to in-vivo use: evaluating the Oxford Unicompartmental Knee. Transactions of the 46th Annual Meeting of the Orthopaedic Research Society, 2000 Orlando, Florida. Orthopaedic Research Society, 434.

Seeger JB, Haas D, Jager S, Rohner E, Tohtz S & Clarius M 2012. Extended sagittal saw cut significantly reduces fracture load in cementless unicompartmental knee arthroplasty compared to cemented tibia plateaus: an experimental cadaver study. Knee Surg Sports Traumatol Arthrosc, 20, 1087-91. https://www.ncbi.nlm.nih.gov/pubmed/22002301

Shrive NG, O’connor JJ & Goodfellow JW 1978. Load-bearing in the knee joint. Clin Orthop Relat Res, 279-87. https://www.ncbi.nlm.nih.gov/pubmed/657636

Simpson DJ, Price AJ, Gulati A, Murray DW & Gill HS 2009. Elevated proximal tibial strains following unicompartmental knee replacement–a possible cause of pain. Med Eng Phys, 31, 752-7. https://www.ncbi.nlm.nih.gov/pubmed/19278893

Taylor WR, Heller MO, Bergmann G & Duda GN 2004. Tibio-femoral loading during human gait and stair climbing. J Orthop Res, 22, 625-32. https://www.ncbi.nlm.nih.gov/pubmed/15099644

Thompson WO, Thaete FL, Fu FH & Dye SF. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. The American Journal of Sports Medicine. 1991;19(3):210-216. doi:10.1177/036354659101900302

Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM & Gedroyc WM 1999. Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br, 81, 37-41. https://www.ncbi.nlm.nih.gov/pubmed/10067999

Walker PS, Blunn GW, Broome DR, Perry J, Watkins A, Sathasivam S, Dewar ME & Paul JP 1997. A knee simulating machine for performance evaluation of total knee replacements. J Biomech, 30, 83-9. https://www.ncbi.nlm.nih.gov/pubmed/8970929

Wroblewski BM 1985. Direction and rate of socket wear in Charnley low-friction arthroplasty. J Bone Joint Surg Br, 67, 757-61. https://www.ncbi.nlm.nih.gov/pubmed/4055876

Was this helpful?

Yes  No
Related Articles
  • Potential problems with the tibia
  • Cementless Oxford arthroplasty
  • Polyethylene wear in the Oxford Knee: Continued
  • Polyethylene wear in the Oxford Knee
  • The Oxford ‘Meniscal’ Knee
  • The natural knee
The Oxford Knee Replacement is the most widely used partial knee replacement worldwide. Replacing one side of the knee, unicompartmental knee replacement, tends to result in shorter hospital stays, fewer short-term complications, faster recovery and better knee function than total knee replacements.

© All rights reserved Oxford Knee Info 2025

.

Privacy Policy

Popular Search:ACL damage, physical signs